Articoli

Analisi predittiva nella prevenzione degli incidenti in un sistema complesso

L’analisi predittiva può supportare la gestione del rischio identificando dove è probabile che si verifichino guasti e cosa si può fare per prevenirli.

Tempo di lettura stimato: 6 minuti

Contesto

Le aziende generano quantità sempre crescenti di dati associati alle operazioni aziendali, portando a un rinnovato interesse per l’analisi predittiva, un campo che analizza grandi set di dati per identificare modelli, prevedere risultati e guidare il processo decisionale. Le aziende si trovano inoltre ad affrontare una gamma complessa e in continua espansione di rischi operativi da identificare e mitigare in modo proattivo. Sebbene molte aziende abbiano iniziato a utilizzare l’analisi predittiva per identificare opportunità di marketing/vendita, strategie simili sono meno comuni nella gestione del rischio, compresa la sicurezza.

Gli algoritmi di classificazione, una classe generale di analisi predittiva, potrebbero essere particolarmente utili per le industrie di raffinazione e petrolchimica prevedendo il periodo e il luogo degli incidenti di sicurezza sulla base dei dati di ispezione e manutenzione relativi alla sicurezza, essenzialmente indicatori anticipatori. Ci sono due sfide principali associate a questo metodo: (1) garantire che gli indicatori anticipatori misurati siano effettivamente predittivi degli incidenti e (2) misurare gli indicatori anticipatori con una frequenza sufficiente da avere valore predittivo.

Metodologia

Utilizzando dati di ispezione regolarmente aggiornati, è possibile creare un modello utilizzando una regressione logistica. In questo modo si potrebbe creare un modello, ad esempio, per prevede le probabilità di rottura delle rotaie per ogni miglio di binario. Le probabilità si possono aggiornare man mano che vengono raccolti dati aggiuntivi.

Oltre alle probabilità previste di rottura delle rotaie, con lo stesso modello possiamo identificare le variabili con maggiore validità predittiva (quelle che contribuiscono in modo significativo alla rottura delle rotaie). Utilizzando i risultati del modello, sarà possibile di identificare esattamente dove concentrare le risorse di manutenzione, ispezione e miglioramento del capitale e quali fattori affrontare durante queste attività.

La stessa metodologia potrebbe essere utilizzata nelle industrie di raffinazione e petrolchimica per gestire i rischi prevedendo e prevenendo gli incidenti, a condizione che le organizzazioni:

  • Identifichino indicatori anticipatori con validità predittiva;
  • Misurano regolarmente gli indicatori anticipatori (dati di ispezione, manutenzione e attrezzature);
  • Creano un sistema predittivo modello basato su indicatori misurati;
  • Aggiornare il modello man mano che i dati vengono raccolti;
  • Utilizzare i risultati per dare priorità alla manutenzione, alle ispezioni e ai progetti di miglioramento del capitale e rivedere i processi/pratiche operative;

Analisi Predittiva

L’analisi predittiva è un campo ampio che comprende aspetti di varie discipline, tra cui l’apprendimento automatico, l’intelligenza artificiale, la statistica e il data mining. L’analisi predittiva scopre modelli e tendenze in grandi set di dati. Un tipo di analisi predittiva, gli algoritmi di classificazione, potrebbero essere particolarmente vantaggiosi per le industrie di raffinazione e petrolchimica.

Newsletter sull’Innovazione
Non perderti le notizie più importanti sull'Innovazione. Iscriviti per riceverle via e-mail.

Gli algoritmi di classificazione possono essere classificati come apprendimento automatico supervisionato. Con l’apprendimento supervisionato, l’utente dispone di un set di dati che include misurazioni di variabili predittive che possono essere collegate a risultati noti. Nel modello discusso nella sezione dei casi di studio di questo articolo, sono state effettuate varie misurazioni del binario (ad esempio curvatura, incroci) durante un periodo per ogni miglio di rotaia. Il risultato noto, in questo caso, è se si è verificata una rottura del binario su ciascun miglio ferroviario durante quel periodo di due anni.

Algoritmo di Modellazione

Un algoritmo di modellazione appropriato viene quindi selezionato e utilizzato per analizzare i dati e identificare le relazioni tra le misurazioni delle variabili e i risultati per creare regole predittive (un modello). Una volta creato, al modello viene fornito un nuovo set di dati contenente misurazioni di variabili predittive e risultati sconosciuti e quindi calcolerà la probabilità del risultato in base alle regole del modello. Questo rispetto ai tipi di apprendimento non supervisionato, in cui gli algoritmi rilevano modelli e tendenze in un set di dati senza alcuna direzione specifica da parte dell’utente, diversa dall’algoritmo utilizzato.

Gli algoritmi di classificazione comuni includono regressione lineare, regressione logistica, albero decisionale, rete neurale, macchina vettoriale di supporto/discriminanti flessibili, classificatore Bayes ingenuo e molti altri. Le regressioni lineari forniscono un semplice esempio di come funziona un algoritmo di classificazione. In una regressione lineare, viene calcolata una linea di adattamento migliore in base ai punti dati esistenti, fornendo l’equazione della linea ay = mx + b. L’immissione della variabile conosciuta (x) fornisce una previsione per la variabile sconosciuta (y).

La maggior parte delle relazioni tra variabili nel mondo reale non sono lineari, ma complesse e di forma irregolare. Pertanto, la regressione lineare spesso non è utile. Altri algoritmi di classificazione sono in grado di modellare relazioni più complesse, come le relazioni curvilinee o logaritmiche. Ad esempio, un algoritmo di regressione logistica può modellare relazioni complesse, può incorporare variabili non numeriche (ad esempio, categorie) e spesso può creare modelli realistici e statisticamente validi. L’output tipico di un modello di regressione logistica è la probabilità prevista del verificarsi del risultato/evento. Altri algoritmi di classificazione forniscono un output simile alla regressione logistica, ma gli input richiesti sono diversi tra gli algoritmi.

Gestione del Rischio

La modellazione di relazioni complesse è particolarmente utile nella gestione del rischio, dove al rischio viene generalmente assegnata la priorità in base alla probabilità e alla potenziale gravità di un particolare risultato. La modellazione dei fattori di rischio che contribuiscono a tale risultato si traduce in una stima precisa e statisticamente valida della probabilità del risultato. Al contrario, molte valutazioni del rischio misurano la “probabilità” su una scala categorica (una volta ogni dieci anni, una volta all’anno, più volte all’anno), che è meno precisa, più soggettiva e rende impossibile distinguere tra i rischi presenti nel rischio. stessa ampia categoria. Esistono altre tecniche per valutare in modo quantificabile la potenziale gravità in una valutazione del rischio, ma ciò va oltre lo scopo di questo articolo.

Letture Correlate

BlogInnovazione.it

Newsletter sull’Innovazione
Non perderti le notizie più importanti sull'Innovazione. Iscriviti per riceverle via e-mail.

Articoli recenti

Come usare le visualizzazioni e il layout in PowerPoint

Microsoft PowerPoint fornisce diversi tipi di strumenti per rendere le presentazioni fruibili, interattive e adatte a diversi scopi. Gli strumenti…

20 Maggio 2024

Apprendimento automatico: confronto tra Random Forest e albero decisionale

Nel mondo del machine learning, sia gli algoritmi random forest che decision tree svolgono un ruolo fondamentale nella categorizzazione e…

17 Maggio 2024

Come migliorare le presentazioni Power Point, consigli utili

Esistono molti suggerimenti e trucchi per fare ottime presentazioni. L'obiettivo di queste regola è di migliorare l'efficacia, la scorrevolezza di…

16 Maggio 2024

È ancora la velocità la leva nello sviluppo dei prodotti, secondo il report di Protolabs

Pubblicato il rapporto "Protolabs Product Development Outlook". Esamina le modalità in cui oggi vengono portati i nuovi prodotti sul mercato.…

16 Maggio 2024

I quattro pilastri della Sostenibilità

Il termine sostenibilità è oramai molto usato per indicare programmi, iniziative e azioni finalizzate alla preservazione di una particolare risorsa.…

15 Maggio 2024

Come consolidare i dati in Excel

Una qualsiasi operazione aziendale produce moltissimi dati, anche in forme diverse. Inserire manualmente questi dati da un foglio Excel a…

14 Maggio 2024

Analisi trimestrale Cisco Talos: mail aziendali nel mirino dei criminali Manifatturiero, Istruzione e Sanità i settori più colpiti

La compromissione delle mail aziendali sono aumentate nei primi tre mesi del 2024 più del doppio rispetto all’ultimo trimestre del…

14 Maggio 2024

Principio di segregazione dell’interfaccia (ISP), quarto principio S.O.L.I.D.

Il principio di segregazione dell'interfaccia è uno dei cinque principi SOLID della progettazione orientata agli oggetti. Una classe dovrebbe avere…

14 Maggio 2024

Leggi Innovazione nella tua Lingua

Newsletter sull’Innovazione
Non perderti le notizie più importanti sull'Innovazione. Iscriviti per riceverle via e-mail.

Seguici